Numerical valuation of options under Kou’s model
نویسنده
چکیده
Numerical methods are developed for pricing European and American options under Kou’s jump-diffusion model which assumes the price of the underlying asset to behave like a geometrical Brownian motion with a drift and jumps whose size is log-double-exponentially distributed. The price of a European option is given by a partial integro-differential equation (PIDE) while American options lead to a linear complementarity problem (LCP) with the same operator. Spatial differential operators are discretized using finite differences on nonuniform grids and time stepping is performed using the implicit Rannacher scheme. For the evaluation of the integral term easy to implement recursion formulas are derived which have optimal computational cost. When pricing European options the resulting dense linear systems are solved using a stationary iteration. Also for pricing American options similar iterations can be employed. A numerical experiment demonstrates that the described method is very efficient as accurate option prices can be computed in a few milliseconds on a PC.
منابع مشابه
An efficient sparse grid Galerkin approach for the numerical valuation of basket options under Kou’s jump-diffusion model
We use a sparse grid approach to discretize a multi-dimensional partial integro-differential equation (PIDE) for the deterministic valuation of European put options on Kou’s jump-diffusion processes. We employ a generalized generating system to discretize the respective PIDE by the Galerkin approach and iteratively solve the resulting linear system. Here, we exploit a newly developed recurrence...
متن کاملComparison of Selected Advanced Numerical Methods for Greeks Calculation of Vanilla Options
Option valuation has been a challenging issue of financial engineering and optimization for a long time. The increasing complexity of market conditions requires utilization of advanced models that, commonly, do not lead to closed-form solutions. Development of novel numerical procedures, which prove to be efficient within various option valuation problems, is therefore worthwhile. Notwithstan...
متن کاملNumerical Valuation of European and American Options under Kou's Jump-Diffusion Model
Numerical methods are developed for pricing European and American options under Kou’s jump-diffusion model which assumes the price of the underlying asset to behave like a geometrical Brownian motion with a drift and jumps whose size is log-double-exponentially distributed. The price of a European option is given by a partial integro-differential equation (PIDE) while American options lead to a...
متن کاملNumerical valuation of options with jumps in the underlying
A jump-diffusion model for a single-asset market is considered. Under this assumption the value of a European contingency claim satisfies a general partial integro-differential equation (PIDE). The equation is localized and discretized in space using finite differences and finite elements and in time by the second order backward differentiation formula (BDF2). The resulting system is solved by ...
متن کاملRandomisation and recursion methods for mixed-exponential Lévy models, with financial applications
We develop a new Monte Carlo variance reduction method to estimate the expectation of two commonly encountered path-dependent functionals: first-passage times and occupation times of sets. The method is based on a recursive approximation of the first-passage time probability and expected occupation time of sets of a Lévy bridge process that relies in part on a randomisation of the time paramete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008